Steam Treated Ordered Mesoporous Carbon Nanomaterials for Catalytic Conversion of Silicon Tetrachloride to Trichlorosilane.

نویسندگان

  • Do-Hwan Kwak
  • M Shaheer Akhtar
  • Ji Man Kim
  • O-Bong Yang
چکیده

The steam-pretreatment on ordered-mesoporous carbon (OMC) catalysts was conducted to improve the catalytic properties for silicon tetrachloride (STC) to trichlorosilane (TCS) conversion. The surface area, pore size and pore volume of OMC were significantly changed as a function of pretreatment temperature. The steam-pretreated OMC at 500 degrees C exhibited the high surface area (-1476.4 m2/g) and pore volume (1.89 cm3/g), which leads the highest conversion rate of 10.8% as compared to bare-OMC (4.3%) and the steam-pretreated OMC. The steam-pretreatment on OMC might increase active oxygenated species, which promoted the generation of active sites of C-O-Si-for high conversion of STC to TCS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrodechlorination of Silicon Tetrachloride to Trichlorosilane Over Ordered Mesoporous Carbon Catalysts: Effect of Pretreatment of Oxygen and Hydrochloric Acid.

This paper reports on the catalytic reaction for the conversion of silicon tetrachloride (STC) to trichlorosilane (TCS) over pretreated ordered mesoporous carbon (OMC) catalysts by oxygen (denoted as OMC-O2) and hydrochloric acid (denoted as OMC-HCl) at 300 degrees C under N2 atmosphere. The OMC-O2 shows significantly improved the surface area (1341.2 m2/g) and pore volume (1.65 cm3/g), which r...

متن کامل

Synthesis of Mesoporous Metal Oxides by Structure Replication: Thermal Analysis of Metal Nitrates in Porous Carbon Matrices

A variety of metal nitrates were filled into the pores of an ordered mesoporous CMK-3 carbon matrix by solution-based impregnation. Thermal conversion of the metal nitrates into the respective metal oxides, and subsequent removal of the carbon matrix by thermal combustion, provides a versatile means to prepare mesoporous metal oxides (so-called nanocasting). This study aims to monitor the therm...

متن کامل

Bifunctional Mesoporous Carbon Nitride: Highly Efficient Enzyme-like Catalyst for One-pot Deacetalization-Knoevenagel Reaction

Recently, mesoporous carbon nitride (MCN) has aroused extensive interest for its potential applications in organocatalysis, photo- and electrochemistry and CO2 capture. However, further surface functionalization of MCN for advanced nanomaterials and catalysis still remains very challenging. Here we show that acidic carboxyl groups can be smoothly introduced onto the surface of well-ordered MCN ...

متن کامل

Mesoporous Carbon Modified with Iron Oxide Based Magnetic Nanomaterials for Removal of Malachite Green Dye From Aqueous Solution

Mesoporous carbon (CMK-3) modified with Fe3O4 nanoparticles has been successfully synthesized and characterized by powder X-ray diffraction (XRD), N2 adsorption-desorption, scanning electron microscope (SEM) and transmission electron microscopy (TEM).The results depict that the synthesized Fe-CMK-3 preserved the ordered mesoporous structure of CMK-3, and magnetic species were dispersed insi...

متن کامل

The Effect of Mesoporous Carbon Nitride Modification by Titanium Oxide Nanoparticles on Photocatalytic Degradation of 1,3-Dinitrobenzene

In the present work, well ordered, mesoporous carbon nitride (MCN) sorbent with uniform mesoporous wall, high surface area and pore volume has been fabricated using the simple polymerization reaction between ethylene diamine and carbon tetrachloride in mesoporous silica media, and then modified by TiO2 nanoparticles (Ti-MCN). The structural order and textural properties of the nanoporous materi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nanoscience and nanotechnology

دوره 15 9  شماره 

صفحات  -

تاریخ انتشار 2015